GPU Cluster

The GPU cluster is optimized for workloads requiring GPU acceleration, including machine learning, molecular dynamics simulations, and large-scale data analysis. The cluster supports CUDA, TensorFlow, PyTorch, and other GPU-accelerated frameworks. Users who do not require GPU resources are strongly encouraged to leverage the MPI or SMP clusters instead.

Specifications

Partition Name Node Count GPU Type GPU/Node --constraint Host Architecture Core/Node Max Core/GPU Mem/Node Mem/Core Scratch Network Node Names
l40s 20 L40S 48GB 4 l40s,48g,intel Intel Xeon Platinum 8462Y+ 64 16 512 GB 8 GB 7 TB NVMe 10GbE gpu-n[55-74]
a100 10 A100 40GB PCIe 4 a100,40g,amd AMD EPYC 7742 (Rome) 64 16 512 GB 8 GB 2 TB NVMe HDR200; 10GbE gpu-n[35-44]
2 A100 40GB PCIe 4 a100,40g,intel Intel Xeon Gold 5220R (Cascade Lake) 48 12 384 GB 8 GB 1 TB NVMe 10GbE gpu-n[33-34]
a100_multi 10 A100 40GB PCIe 4 a100,40g,amd AMD EPYC 7742 (Rome) 64 16 512 GB 8 GB 2 TB NVMe HDR200; 10GbE gpu-n[45-54]
a100_nvlink 2 A100 80GB SXM 8 a100,80g,amd AMD EPYC 7742 (Rome) 128 16 1 TB 8 GB 2 TB NVMe HDR200; 10GbE gpu-n[31-32]
3 A100 40GB SXM 8 a100,40g,amd AMD EPYC 7742 (Rome) 128 16 1 TB 8 GB 12 TB NVMe HDR200; 10GbE gpu-n[28-30]