
Pub/Sub and Kafka
Troy Raen

University of Pittsburgh | Pitt-Google Broker

LSST Broker Technical Workshop | virtual | November 8, 2021
1

Outline

1. Problem setup:

Requirements for
Ingesting and redistributing live alert streams at LSST scale

2. Comparison of solutions:

Apache Kafka and Google Cloud Pub/Sub

3. Solutions talking to each other:

Kafka Pub/Sub connector

2

Preview Slide 10

You are invited to add your Broker’s info.

3

Problem Statement:
Brokers need to handle high-volume alert streams

1. Consume alert streams from LSST’s Kafka broker (required)
- 10,000,000 alerts/night
- 300 alerts/sec average in 10 hr night
- (What max rates should we expect on a regular basis?)

2. Publish alert streams
- Apache Kafka is the traditional choice for producing alert streams in astronomy
- Pub/Sub is an alternative offering different benefits
- Brokers can use both

3. Facilitate users receiving and processing the streams

4

https://kafka.apache.org/
https://cloud.google.com/pubsub/docs/overview

1. Consume alert streams from LSST’s Kafka broker (required)
- 10,000,000 alerts/night
- 300 alerts/sec average in 10 hr night
- (What max rates should we expect on a regular basis?)

2. Publish alert streams
- Apache Kafka is the traditional choice for producing alert streams in astronomy
- Pub/Sub is an alternative offering different benefits
- Brokers can use both

3. Facilitate users receiving and processing the streams

Problem Statement:
Brokers need to handle high-volume alert streams

5

Requirements for a
message streaming platform/service:

Consume and produce streams
- at these rates,
- with minimal lag,
- at reasonable cost,
- in a format useful to

- internal processing
- end-user astronomers

https://kafka.apache.org/
https://cloud.google.com/pubsub/docs/overview

1. Problem setup:

Requirements for
Ingesting and redistributing live alert streams at LSST scale

2. Comparison of solutions:

Apache Kafka and Google Cloud Pub/Sub

3. Solutions talking to each other:

Kafka Pub/Sub connector

Outline

6

Comparing Kafka and Pub/Sub
(Alt title: Intro to Pub/Sub via comparison with Kafka)

Kafka Pub/Sub
Function Produce and consume live

message streams
Produce and consume live
message streams

What is it?
Infrastructure + Software req’d
Scalability
Features
Message Anatomy
Workflow
Extendability
End-user APIs
Cost

Detailed comparison at cloud.google.com/architecture/migrating-from-kafka-to-pubsub 7

explored in the following slides

https://cloud.google.com/architecture/migrating-from-kafka-to-pubsub

Pub/Sub
cloud.google.com/pubsub/docs/overview

“asynchronous messaging service”

“used for streaming analytics and data
integration pipelines to ingest and distribute

data... equally effective as messaging-oriented
middleware for service integration or as a queue

to parallelize tasks.”

Kafka
kafka.apache.org

“open-source distributed
event streaming platform”

“used by thousands of companies for
high-performance data pipelines, streaming

analytics, data integration, and mission-critical
applications”

Comparing Kafka and Pub/Sub: What is it?

8

https://cloud.google.com/pubsub/docs/overview
https://kafka.apache.org/

Pub/Sub
Data storage, delivery, auth managed by

Pub/Sub.

Publishing at scale requires

Google Cloud project & credentials + API

e.g., `pip install google-cloud-pubsub`

+ network bandwidth to publish once, to Pub/Sub

Kafka
Data storage, delivery, auth managed by

user producing the stream.

Publishing at scale requires

Minimum(?): Server + Confluent Platform

Common(?): Cluster + Confluent Platform +
 managed solution

Zookeeper, Confluent Cloud,
Kubernetes

+ network bandwidth to distribute to all consumers

Comparing Kafka and Pub/Sub: Infrastructure + Software req’d

9

Who’s using what?

10

Ingest LSST/ZTF streams Communicate Internally Produce streams Manage

ALeRCE [Kafka] [Kafka] [Kafka] Zookeeper
MirrorMaker

AMPEL [Kafka] ? None? (single container)

ANTARES [Kafka] Kafka-ElasticSearch
connector? + others?

[Kafka] Zookeeper

Babamul Fritz
(->Kowalski->confluent-kafka
-python->librdkafka)

(Fritz) (Fritz)

Fink [Kafka] Spark-Kafka connector (+
others?)

[Kafka] Zookeeper

Lasair [Kafka] [Kafka] + others [Kafka] MirrorMaker

Pitt-Google Confluent Platform +
Kafka-Pub/Sub connector

Pub/Sub push subscriptions +
python client

Pub/Sub python client
(->gRPC)

none

SNAPS

POI/Variables

Kafka
Obtain an account + credentials from

the Broker

SSL, SASL, OAuth, …

Producer choice

Pub/Sub
Obtain account + credentials from

Google Cloud

OAuth, service account tokens, …

Consumer choice

Comparing Kafka and Pub/Sub: Authentication

11

Comparing Kafka and Pub/Sub: Scalability

12

Pub/Sub
 Horizontally scalable.

Happens automatically in response to demand,
handled by Pub/Sub. Producers are

independent from consumers.

Subscription

Kafka
 Horizontally scalable.

Increase the number of partitions (and
machines, if necessary) to handle increased

demand.

Topic? Subscription?

https://cloud.google.com/architecture/migrating-from-kafka-to-pubsub

https://cloud.google.com/architecture/migrating-from-kafka-to-pubsub
https://cloud.google.com/architecture/migrating-from-kafka-to-pubsub
https://cloud.google.com/architecture/migrating-from-kafka-to-pubsub

Pub/SubKafka

Comparing Kafka and Pub/Sub: Features
https://cloud.google.com

/architecture/m
igrating-from

-kafka-to-pubsub#com
paring_features 13

https://cloud.google.com/architecture/migrating-from-kafka-to-pubsub#comparing_features
https://cloud.google.com/architecture/migrating-from-kafka-to-pubsub#comparing_features

Pub/SubKafka

Comparing Kafka and Pub/Sub: Features
https://cloud.google.com

/architecture/m
igrating-from

-kafka-to-pubsub#com
paring_features

Not Pub/Sub defaults.
Does anyone care?

14

https://cloud.google.com/architecture/migrating-from-kafka-to-pubsub#comparing_features
https://cloud.google.com/architecture/migrating-from-kafka-to-pubsub#comparing_features

Pub/SubKafka

Comparing Kafka and Pub/Sub: Features
https://cloud.google.com

/architecture/m
igrating-from

-kafka-to-pubsub#com
paring_features 15

Push to HTTP endpoints.
Trigger event-based processing.

Google Cloud Run and other services.

https://cloud.google.com/architecture/migrating-from-kafka-to-pubsub#comparing_features
https://cloud.google.com/architecture/migrating-from-kafka-to-pubsub#comparing_features

Pub/Sub
Message data (bytes)

Message metadata
- publish time, message id
- custom attributes (can be used for
filtering)

https://cloud.google.com/pubsub/docs/reference/rpc/goo
gle.pubsub.v1#google.pubsub.v1.PubsubMessage

Kafka
Message data (bytes, always?)

Message metadata
- timestamp, topic, partition, offset, key
- more?
- custom?

reference?

Comparing Kafka and Pub/Sub: Message Anatomy

16

https://cloud.google.com/pubsub/docs/reference/rpc/google.pubsub.v1#google.pubsub.v1.PubsubMessage
https://cloud.google.com/pubsub/docs/reference/rpc/google.pubsub.v1#google.pubsub.v1.PubsubMessage

Kafka
Consumer polls the broker.

Broker sends a batch of messages from a topic
partition, in order, tracking message offsets.

Consumers periodically commit offsets
(not for every message)

Consumers can rewind/fast forward to specific
offset.

Pub/Sub
Subscriber pulls messages,

-or- subscription pushes messages to endpoint.

Pub/Sub sends messages from a subscription,
tracking subscriber acknowledgements.

Subscriber processes the message, then sends
an acknowledgement back to Pub/Sub.

(messages are redelivered if no acknowledgement is received)

Subscribers can seek backward/forward in time.
(but acknowledged messages not retained by default; costs extra)

Comparing Kafka and Pub/Sub: Workflow

17

Kafka
Many plugins that connect Kafka to other
services. confluent.io/hub.

- Apache Cassandra,
- MongoDB,
- AWS Lambda & S3,
- Google Pub/Sub & Cloud Functions & Cloud
Storage

KafkaUtils API connects to Spark Streaming

Others?

Pub/Sub
Push to any HTTP endpoint for event-driven
processing/storage.

- Google Cloud Functions
- Dataflow
- Google Cloud Run
- AWS Lambda?

Pull from anywhere with network access
(API clients, REST, RPC, CLI).

Comparing Kafka and Pub/Sub: Extendability/Connectors

18

https://www.confluent.io/hub
https://spark.apache.org/docs/2.1.2/streaming-kafka-0-8-integration.html

Pub/Sub
APIs:
- REST, RPC
- Client libraries (Python, Java, C++, etc.)

- Pitt-Google Python wrappers
- TOM Toolkit (Pitt-Google)

- CLI
- Console

Python client:

`pip install google-cloud-pubsub`

Kafka
Custom APIs:

- antares_client.StreamingClient
- fink-client
- hop-client
- TOM Toolkit (ANTARES, Fink, Lasair, ALeRCE,

 SCIMMA, TNS, etc.)

- others?

Python client:
`pip install --no-binary :all:

confluent-kafka`
(plus librdkafka and dependencies,

for SASL Kerberos/GSSAPI support)

Comparing Kafka and Pub/Sub: End-user APIs

19

https://cloud.google.com/pubsub/docs/reference/rest
https://cloud.google.com/pubsub/docs/reference/rpc
https://cloud.google.com/pubsub/docs/reference/libraries
https://cloud.google.com/pubsub/docs/quickstart-cli
https://cloud.google.com/pubsub/docs/quickstart-console
https://googleapis.dev/python/pubsub/latest/index.html
https://nsf-noirlab.gitlab.io/csdc/antares/client/tutorial/streaming.html
https://fink-broker.readthedocs.io/en/latest/fink-client/
https://scimma.org/projects.html
https://docs.confluent.io/platform/current/clients/confluent-kafka-python/html/index.html

Pub/Sub
Throughput:

$40 per TiB of data transmitted

(first 10 GiB/month is free)

Egress:
$0.045 - $0.23 per GiB delivered

(applies to messages crossing a Google Cloud region)

Who pays?
Producers pay to publish

Subscribers pay to consume

cloud.google.com/pubsub/pricing

Kafka
?

(machines, network, maintenance)

Comparing Kafka and Pub/Sub: Cost

20

https://cloud.google.com/pubsub/pricing

Outline

1. Problem setup:

Requirements for
Ingesting and redistributing live alert streams at LSST scale

2. Comparison of solutions:

Apache Kafka and Google Cloud Pub/Sub

3. Solutions talking to each other:

Kafka Pub/Sub connector

21

Kafka Connect plugin to Confluent Platform
https://github.com/GoogleCloudPlatform/pubsub/tree/master/kafka-connector

- Hands off implementation:
- call a bin file, pass in configs
- it manages the connection, polls the broker, and publishes the messages (Kafka -> Pub/Sub)

- Standalone and distributed modes

- Data conversion tools available

- Built and supported by Pub/Sub developers (not Confluent)

Kafka Pub/Sub Connector

22

https://github.com/GoogleCloudPlatform/pubsub/tree/master/kafka-connector

Pitt-Google uses this to ingest ZTF’s streams (Kafka -> Pub/Sub)

- We pass message bytes straight through (no decoding), plus metadata

- Single “g1-small” VM (standalone mode)
- 0.5 vCPU
- 1.70 GB memory
- ~$8/month

- <0.5 sec mean delay between Kafka and Pub/Sub timestamps
- Preliminary tests indicate it will handle LSST loads similarly

Kafka Pub/Sub Connector
https://github.com/GoogleCloudPlatform/pubsub/tree/master/kafka-connector

23

https://github.com/GoogleCloudPlatform/pubsub/tree/master/kafka-connector

24

Kafka Pub/Sub Connector

- Should try in reverse, Pub/Sub -> Kafka (hack day?)

- (Avro formats to facilitate exchange)

Kafka Pub/Sub Connector
https://github.com/GoogleCloudPlatform/pubsub/tree/master/kafka-connector

25

https://github.com/GoogleCloudPlatform/pubsub/tree/master/kafka-connector

Talking to each other

Converting Kafka -> Pub/Sub doable at-scale with minimal resources (Pitt-Google demonstrating).
Let’s try converting Pub/Sub -> Kafka

Pub/Sub
Type: Service

Benefits: Ease of use. Lightweight.
Low barrier to entry.

Drawbacks: Cost?
Less familiarity within astronomy.

Extendability:Push subscriptions.
Simple API access.

Kafka
Type: Platform

Benefits: More familiarity among astronomers.
Many astronomy tools integrated.

Drawbacks: Managing software, servers, data.
Installation and configuration.

Extendability:Connectors to many applications.

Summary

26

