
Distributed database for time-series 
using Apache HBase

lessons learned

Julien Peloton
2021-11-09



Fink pipeline



Apache HBase
● Initial release 2008

○ From Google BigTable
○ Open source

● Non-relational & distributed
● Wide column store

○ 2D key/value store
○ “3D” structure: row/col/time

● Compression, cache operations, fault-tolerance (through replication)…



HBase in Fink
● Under test since 2019 (experience comes from CERN engineers)

○ Currently using version 2.2.7 (2021-04-16). Latest stable is 2.4.8 
(2021-11-03).

● Pseudo-distributed mode (1 machine x 16 cores)
○ HBase manages its own Zookeeper

● Data stored on HDFS (11 machines x 3.5 TB)
○ Used to store aggregated data.
○ Currently about 4 TB of ZTF alert data



HBase in Fink

Rowkey is a composite with objectId and emission time

Column family typically describe the provenance (ZTF, Fink, GW, GRB, etc.)

Columns describe fields (values can be null), e.g. objectId, magpsf, cutouts_*



HBase in Fink
Used as the backend for our web 
services (incl. REST API)

Updated once a night, at the end of the 
observing night

● Streaming mode is not trivial 
(discussed later)

Support concurrency & can deal 
simultaneously with hundreds of 
requests without problems



Some typical numbers
Bulk load in HBase with Apache Spark (write perf per core)



HBase pros (1/2)
Mature and stable technology

● Developed by a small, but active set of developers

Simple to deploy

● Good old Java technology + Zookeeper on top

Despite no SQL syntax, the query language remains easy, and extending it is not 
difficult (e.g. user-defined functions in Java) without sacrificing too much the 
performances.



HBase pros (2/2)
Somehow large adoption in the community

● Many available plugins for Apache Spark, Apache Kafka, … Can serve as 
backend for JanusGraph, …

Schemaless database

● Easy to accommodate for alert schema evolution

Very efficient random access (on primary key)

● Less than 10ms response time with extremely modest hardware on standard 
queries for O(10) TB dataset



HBase cons (1/2)
Multi-index queries is not native

● Possible hacks: composite keys, index tables, 
…. But they are hacks.

Co-machin

Streaming is possible, but there is a price to pay

● “Compaction storm” can happen more often 
than you think…

Time travel rarely used in practice (never in 
production at least)



HBase cons (2/2)
SQL syntax can be made possible (e.g. using Phoenix) but not recommended

● Performance degradation

HBase runs on top of… HDFS. Other storages are not recommended (or just 
impossible to use).

Debug and optimisation can be painful

● Use of external repair tools, cryptic errors (JVM’s fault)



Conclusion
Apache HBase can be used for time-series, and under some conditions it offers 
very good performances.

The main drawbacks to me are:

● Lack of efficient native multi-index capabilities
● Efficient streaming (write) is possible but need some hack
● Debug can be hell

We will continue to use it in Fink for time being, but other solutions are under 
investigation.


