[/

Distributed database for time-series

using Apache HBase
lessons learned

Julien Peloton

2021-11-09
Vi

Fink pipeline

‘ ﬁ N K C Storage HDFS)
o > ' Processing Smence Portal
Main streams Apache Spark Science data Apache HBase

Rubin, ZTF Access fo !

Communication archived data V¥
Apache Kafka @ @
I l. » Q
Other survey Accessing Fink live » ¢ x
streams filtered streams

Vi

Apache HBase

Vi

e [nitial release 2008
o From Google BigTable
o Open source
e Non-relational & distributed
e \Wide column store
o 2D keyl/value store
o “3D” structure: row/col/time

'

HBRASE

e Compression, cache operations, fault-tolerance (through replication)...

HBase in Fink

e Under test since 2019 (experience comes from CERN engineers)
o Currently using version 2.2.7 (2021-04-16). Latest stable is 2.4.8
(2021-11-03).
e Pseudo-distributed mode (1 machine x 16 cores)
o HBase manages its own Zookeeper
e Data stored on HDFS (11 machines x 3.5 TB)
o Used to store aggregated data.
o Currently about 4 TB of ZTF alert data

Vi

HBase in Fink

Rowkey (index)

[A e ML G R

Col1 Col2 Col1 Col2 Col3 Col4
E. :l-\l-e-rt-#jl : Value Value Value Value
E Alert #2 Value Value Null
) Value Null Value
' Alert #N Value

Rowkey is a composite with objectld and emission time
Column family typically describe the provenance (ZTF, Fink, GW, GRB, etc.)

Columns describe fields (values can be null), e.g. objectld, magpsf, cutouts _*

Vi

HBase in Fink

[Storage J
Used as the backend for our web HDFS

services (incl. REST API) J r
(Science Portal J

Updated once a night, at the end of the Apache HBase
observing night A N

e Streaming mode is not trivial)
. Web services
(discussed later) Dash

Support concurrency & can deal
simultaneously with hundreds of
requests without problems

Vi

i

Some typical numbers

Bulk load in HBase with Apache Spark (write perf per core)

B Scheduler Delay

B Task Deserialization Time

Shuffle Read Time
0/vm-75102.lal.in2p3.fr

Executor Computing Time
Shuffle Write Time

B Result Serialization Time

10 20 30 40

8 November 21:08

Summary Metrics for 38 Completed Tasks

Metric

Duration

Scheduler Delay

Task Deserialization Time
GC Time

Result Serialization Time
Getting Result Time
Peak Execution Memory

Input Size / Records

—

Min

2s

10ms

11 ms

35 ms

0Oms

0ms

0.0B

10.7 MB / 253

7l Getting Result Time

50 0 10
8 November 21:09

25th percentile
9s

12ms

16 ms

0.1s

0Oms

0ms

0.0B

89.2 MB /2296

20 30

Median

10s

14 ms

17 ms

02s

0Oms

Oms

0.0B

117.6 MB / 3030

40

50

0 10
8 November 21:10

75th percentile
10s

16 ms

18 ms

02s

1ms

0ms

0.0B

117.7 MB / 3035

20

30 40 50

Max

16s

43 ms

03s

04s

1ms

0ms

0.0B

117.9 MB / 3038

8 Nc

HBase pros (1/2)

Mature and stable technology

e Developed by a small, but active set of developers
Simple to deploy

e Good old Java technology + Zookeeper on top

Despite no SQL syntax, the query language remains easy, and extending it is not
difficult (e.g. user-defined functions in Java) without sacrificing too much the

performances.

Vi

HBase pros (2/2)

Somehow large adoption in the community

e Many available plugins for Apache Spark, Apache Kafka, ... Can serve as
backend for JanusGraph, ...

Schemaless database
e Easy to accommodate for alert schema evolution
Very efficient random access (on primary key)

e Less than 10ms response time with extremely modest hardware on standard
ﬂ queries for O(10) TB dataset

HBase cons (1/2)

Multi-index queries is not native

e Possible hacks: composite keys, index tables,
.... But they are hacks.

Rowkey=objectld_time

Co-machin

——— > pixel_time: objectld

— ssnamenr_time: objectld
—> class_time_objectld: objectld
— tnsld_time: objectld

Streaming is possible, but there is a price to pay

e “Compaction storm” can happen more often
than you think...

Time travel rarely used in practice (never in

Wﬂ_ﬂ)roduction at least)

HBase cons (2/2)

SQL syntax can be made possible (e.g. using Phoenix) but not recommended
e Performance degradation

HBase runs on top of... HDFS. Other storages are not recommended (or just
impossible to use).

Debug and optimisation can be painful

e Use of external repair tools, cryptic errors (JVM'’s fault)

Vi

Conclusion

Apache HBase can be used for time-series, and under some conditions it offers
very good performances.

The main drawbacks to me are:

e Lack of efficient native multi-index capabilities
e Efficient streaming (write) is possible but need some hack

e Debug can be hell

We will continue to use it in Fink for time being, but other solutions are under
investigation.

Vi

